NSLS-II

Steve Dierker
Associate Laboratory Director for Light Sources
NSLS-II Project Director
Brookhaven National Laboratory
NSF Panel on Light Source Facilities
January 9, 2008

High Level Description of NSLS-II

Highly optimized x-ray synchrotron delivering:

- extremely high brightness and flux
- very small beams with exceptional beam stability
- suite of advanced instruments, optics, & detectors

Together, these:

- •provide outstanding performance and flexibility from the far-IR to the very hard x-ray regions to support diverse scientific needs
- •enable the study of materials properties and functions with unprecedented spatial (~ 1 nm) and energy (~ 0.1 meV) resolutions and sensitivity (single atom)

What Research will NSLS-II Enable?

Structure & properties/functions

Observe fundamental material properties with nanometer-scale resolution and atomic sensitivity

- Physical, chemical, electronic, and magnetic structure of nanoparticles, nanotubes and nanowires, e.g. new electronic materials that scale beyond silicon
- Designer catalysts, e.g., in-situ changes in local geometric, chemical, and electronic structure of active catalytic site in real-time and under real reaction conditions

Molecular Electronics

Self-assembly

Understand how to create largescale, hierarchical structures from nanometer-scale building blocks

- Interactions between nanoscale building blocks
- · Kinetics of nanoscale assembly
- Structure of hierarchical materials from nanometers to microns
- Mechanisms of directed assembly (by templating or external fields)
- Molecular interactions in nano-confined environments

Emergent behavior

Probe nanometer-scale materials that display emergent behavior

- Direct 3D imaging of domain structures and dynamics, e.g., in random field magnets and spin glasses
- Colossal magnetoresistance for highsensitivity magnetic sensors or highdensity information storage
- Dynamics of charge and spin stripes in high temperature superconductors

Charge and spin stripes in complex oxides

BROOKHAVEN
NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

Project Scope

Accelerator Systems

- Storage Ring (~ ½ mile in circumference)
- Linac and Booster Injection System

Conventional Facilities

- Ring Building w/ Operations Center and service buildings (~ 341k gsf)
- Laboratory/Office Buildings (LOBs) to house beamline staff & users (~71k gsf)
- Reuse of existing NSLS office/lab space for NSLS-II staff

Experimental Facilities

- Initial suite of 6 insertion device beamlines and instruments
- Capable of hosting at least 58 beamlines

R&D

- Advanced optics for achieving 1 nm and 0.1 meV
- Nanopositioning and mirror metrology

NSLS-II Design

Design Parameters

- 3 GeV, 500 mA, top-off injection
- Circumference 791.5 m
- 30 cell, Double Bend Achromat
 - 15 long straights (9.3 m)
 - 15 short straights (6.6 m)

Novel design features:

- damping wigglers
- soft bend magnets
- three pole wigglers
- large gap IR dipoles

Ultra-low emittance

- ε_x, ε_y = 0.6, 0.008 nm-rad
 Diffraction limited in vertical at 10 keV

Pulse Length (rms) ~ 15 psec

NSLS-II Performance

Very broad spectral coverage

Far-IR through very hard x-rays

Very high brightness

 $> 10^{21} \text{ p/s/0.1\%/mm}^2/\text{mrad}^2 \text{ from } \sim 2 \text{ keV to } \sim 10 \text{ keV}$

Very high flux

 $> 5x10^{15}$ ph/s/0.1%bw from ~ 500 eV to ~ 10 keV

Very small beam size

 σ_{y} = 2.6 μ m, σ_{x} = 28 μ m σ'_{y} = 3.2 μ rad, σ'_{x} = 19 μ rad

Top-off operation

Current stability better than 1%

NSLS-II Beamlines

19 straight sections for undulator beamlines

- Fifteen 6.6 m long low-β and four 9.3 m long high-β
- Highest brightness sources from UV to hard x-ray

8 straight sections for damping wiggler beamlines

- Each 9.3 m long high-β
- Broadband high flux sources from UV to hard x-ray

27 BM ports for IR, UV and Soft X-rays beamlines

Up to 15 of these can have three pole wigglers for hard x-rays

4 Large Gap BM ports for far-IR beamlines

At least 58 beamlines

More by canting multiple IDs per straight

Multiple hutches/beamline are also possible

Radiation Sources: Brightness

Radiation Sources: Flux

(Flux per horizontal milliradian for broadband sources)

Radiation Sources: Infra-Red

Standard gap BMs provide excellent mid and near IR sources Large gap (90 mm) BMs provide excellent far-IR sources

Rendering of NSLS-II

Laboratory Office Buildings

- Three in base scope (22,800 sf each) Each serves six sectors
 - 72 offices w/ conference space, interaction areas, lavs, showers
 - 6 labs optimized for shared use
 - Shipping/Receiving/Storage area & chemical storage area
 - Future addition of 2 more LOB's as facilities builds out
- Egress provided for personnel and large items at each LOB
 - Loading area with exterior roll-up door
 - Double-door from each lab onto the experimental floor
 - Rolling access to all beamline areas

Experimental Floor

Designed to minimize sources and propagation of vibrations

NSLS-II Strawman Beamline Distribution

Possible distribution among beamline categories (and compared to existing NSLS)

	NSLS-II				NSLS	
Туре	IDs	BMs	Total	IDs	BMs	Total
IR/UV/Soft X-ray Spectroscopy	1	8	9	3	7	10
X-ray Spectroscopy	4	4	8	0	9	9
Soft Matter/Biophysics Scattering	4	1	5	0	8	8
Hard Matter/Strongly Correlated Scattering	7	1	8	3	5	8
Powder/single crystal/high P/optics	5	4	9	3	8	11
Imaging/micro-probe	3	8	11	2	7	9
Macromolecular Crystallography	6	3	9	2	8	10
TOTAL	30	29	59	13	52	65

N.B. NSLS-II distribution includes some canting (principally, damping wigglers) and also leaves 3 straights unassigned.

Beamline Acqusition Strategy

FUNDING	BEAMLINES
NSLS-II Project	6 insertion device beamlines to be built by construction project as initial suite for physical sciences
NSLS-II Early Operations	~ 20 bending magnet beamlines transferred from NSLS to NSLS-II
DOE-BES MIE*	~ 16 insertion device beamlines for DOE-BES relevant missions
Non-DOE sources	~ 5 Insertion device beamlines and ~ 11 bending magnet beamlines for non-DOE-BES missions

^{*} MIE = Major Item of Equipment

Project Beamlines

Goal: To provide a minimum suite of insertion device beamlines to meet physical science needs that both exploit the unique capabilities of the NSLS-II source and provide work horse instruments for large user capacity.

- The beamlines are:
 - Nanoprobe (1 nm)
 - Inelastic x-ray scattering (0.1 meV)
 - Soft x-ray coherent scattering and imaging
 - Hard x-ray coherent scattering and SAXS
 - Powder diffraction (damping wiggler source)
 - EXAFS (damping wiggler source)

Phased Transition to NSLS-II Operations

Transition from NSLS to NSLS-II

- Continue operations of NSLS until NSLS-II operational (CD-4)
- NSLS and NSLS-II staff merge to operate NSLS-II

Beneficial Occupancy of Experimental Floor (Feb 2012)

- Enables early operations funding
- Use early operations funding to transfer selected NSLS beamlines to NSLS-II to ensure significant capacity at start of operations
- Primarily techniques with high demand, high productivity
- Mainly occupy 3-pole wigglers and soft-bends
- Expect to transfer about 20 beamlines, accommodating > 1300 users/yr

Early Project Completion (June 2014) / CD-4 (June 2015)

- Start of Full Operations
- All commissioning goals have been achieved

Joint Photon Sciences Institute (JPSI)

- A new initiative in photon sciences to leverage the unique capabilities and internal science programs of NSLS-II
- Brings together interdisciplinary teams in collaborative projects, forging synergistic relationships that enable new science
- Incubator of high risk techniques & applications, requiring broad array of expertise and supporting technology
- New York State is providing \$30 million for the JPSI building

Mission:

- Develop and enhance scientific programs that best utilize NSLS-II
- Develop enabling technologies to support JPSI programs
- Serve as a gateway for NSLS-II
- Educate and train the next generation of leaders in synchrotron research

User Community Input on NSLS-II

U.S. DEPARTMENT OF ENERGY

ATIONAL LABORATOR'
BROOKHAVEN SCIENCE ASSOCIATES

NSLS-II Advisory Committees

Project Advisory Committee

Accelerator Systems Advisory

Experimental Facilities Advisory Committee

Conventional Facilities Advisory Committee

NSLS-II User Workshop (July 17-18, 2007)

More than 450 attendees from 130 different institutions

OSTP: John Marburger **DOE:** Pat Dehmer (BES)

Pedro Montano (BES) Susan Gregurick (BER)

NIH: Charles Edmonds (NIGMS)

Alan McLaughlin (NIBIB)
Michael Marron (NCRR)

Amy Swain (NCRR)

NSF: Guebre Tessema

Pat Dehmer announcing the award of CD-1

John Marburger addressing the audience

BROOKHAVEN
NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

NSLS-II User Workshop

First Day Plenary Session

- Described conceptual design and status of project
- Highlight talks on physical and life sciences and user access models
- Described process for beamline development at NSLS-II
- Described Joint Photon Sciences Institute
- Described plans for transitioning from NSLS to NSLS-II

Second Day Breakout Sessions

Technique-based Sessions

- Hard x-ray Nanoprobe
- Soft Coherent Scattering and Imaging
- Powder Diffraction
- Macromolecular Crystallography
- Liquid Interfaces
- Inelastic X-ray ScatteringHard Coherent and XPCS/SAXS
- •XAFS
- Bio-SAXS
- Photoemission Spectroscopy

Science-based Sessions

- Life Sciences
- Catalysis
- Environmental Science
- High-Pressure
- Strongly Correlated Electrons
- Magnetism
- Radiometry and Metrology
- Soft Condensed Matter

ROOKHAVEN SCIENCE ASSOCIATES

Upcoming Strategic Planning & Beamline Workshops

Technique-Based Workshops

 XPCS and Microbeam SAXS

- X-Ray Absorption Spectroscopy
 Jan. 16
- Powder DiffractionJan. 17-18
- Soft X-Ray ScatteringFeb. 4
- Inelastic X-Ray ScatteringFeb. 7-8
- Nanoprobe Beamline
 Feb. 15

Scientific Strategic Planning Workshops

- •Life Sciences Jan. 15-16
- Materials Science and Engineering
 Jan. 17-18
- Earth and Environmental Sciences
 Jan. 22-23
- Chemical and Energy SciencesFeb. 1
- Hard Condensed Matter and Materials Physics
 Feb. 5-6
- Soft and Biomolecular Materials
 Feb. 11-12

Key Milestones

Aug 2005	CD-0, Approve Mission Need	(Complete)
Oct 2006	Complete EA/FONSI	(Complete)
Nov 2006	Complete Conceptual Design Report, Preliminary Baseline	(Complete)
Dec 2006	Review, Preliminary Baseline	(Complete)
Jul 2007	CD-1, Approve Alternative Selection and Cost Range	(Complete)
Oct 2007	Complete Preliminary Design Report, Performance Baseline	(Complete)
Nov 2007	Review, Performance Baseline	(Complete)
Dec 2007	CD-2, Approve Performance Baseline	(Complete)
Oct 2008	Begin Site Prep	
Jan 2009	CD-3, Approve Start of Construction	
Jun 2009	Issue Ring Building Notice to Proceed	
Mar 2010	Contract Award for Booster System	
Feb 2011	Ring Building Pentant #1 Beneficial Occupancy	
Feb 2012	Beneficial Occupancy of Experimental Floor, Start of Early Ope	rations Funding
Aug 2013	Conventional Facilities Construction Complete	
Oct 2013	Start Accelerator Commissioning	
Jun 2014	Early Project Completion; Ring Available to Beamlines	
Jun 2015	CD-4, Project Completion	

NSLS-II Cost Baseline (\$M)

Project Management	53	
Accelerator Systems	242	
Conventional Facilities	241	
Experimental Facilities	<u>73</u>	
Total Construction Cost Baseline	609	
Contingency (30% of Constr. Cost Baseline)	<u>183</u>	
Total Estimated Costs (TEC)	792	
R&D and Conceptual Design	60	
Pre-Operations	50	
Contingency (20% of Pre-ops)	<u>10</u>	
Other Project Costs (OPC)	120	
Total Project Costs (TPC)	\$ 912	

Funding Profile with Operations & MIE

TPC = \$912M TEC = \$792M (including 30% contingency)

Estimated operating staff:

- 235 FTEs w/ no beamlines
- 550 FTEs w/ 57 beamlines

Note: Operations & MIE funding are not part of

Summary

- Novel design w/ outstanding performance and flexibility from the far-IR to the very hard x-ray. A range of sources matched to various scientific needs.
- Baseline scope provides substantial experimental capability
- Have plan for transition from NSLS and reuse of experimental and conventional facilities from NSLS
- Community is fully engaged in optimizing overall facility utilization

